Process Mining Reloaded: Event Structures as a Unified Representation of Process Models and Event Logs
نویسندگان
چکیده
Process mining is a family of methods to analyze event logs produced during the execution of business processes in order to extract insights regarding their performance and conformance with respect to normative or expected behavior. The landscape of process mining methods and use cases has expanded considerably in the past decade. However, the field has evolved in a rather ad hoc manner without a unifying foundational theory that would allow algorithms and theoretical results developed for one process mining problem to be reused when addressing other related problems. In this paper we advocate a foundational approach to process mining based on a well-known model of concurrency, namely event structures. We outline how event structures can serve as a unified representation of behavior captured in process models and behavior captured in event logs. We then sketch how process mining operations, specifically automated process discovery, conformance checking and deviance mining, can be recast as operations on event structures.
منابع مشابه
Decision Support Based on Process Mining
Process mining techniques allow for the analysis of business processes based on event logs. For example, the audit trails of a workflow management system, the transaction logs of an enterprise resource planning system, and the electronic patient records in a hospital can be used to discover models describing processes, organizations, and products. Moreover, such event logs can also be used to c...
متن کاملConcept drift detection in business process logs using deep learning
Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...
متن کاملProcess Model Discovery: A Method Based on Transition System Decomposition
Process mining aims to discover and analyze processes by extracting information from event logs. Process mining discovery algorithms deal with large data sets to learn automatically process models. As more event data become available there is the desire to learn larger and more complex process models. To tackle problems related to the readability of the resulting model and to ensure tractabilit...
متن کاملApplying graph grammars for the generation of process models and their logs
This work is dedicated to one of the most urgent problems in the field of process mining. Process mining is a technique that offers plenty of methods for the discovery and analysis of business processes based on event logs. However, there is a lack of real process models and event logs, which can be used to verify the methods developed to achieve process mining goals. Hence, there is a need in ...
متن کاملConcept drift detection in event logs using statistical information of variants
In recent years, business process management (BPM) has been highly regarded as an improvement in the efficiency and effectiveness of organizations. Extracting and analyzing information on business processes is an important part of this structure. But these processes are not sustainable over time and may change for a variety of reasons, such as the environment and human resources. These changes ...
متن کامل